首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dependence of water movement on sodium transport in kidney proximal tubule: A microperfusion study substituting lithium for sodium
Authors:B Corman  N Roinel  C de Rouffignac
Institution:(1) Département de Biologie, Centre d'Etudes Nucléaires de Saclay, B.P. no 2, 91190 Gif-sur-Yvette, France
Abstract:Summary The relationship between water and sodium movements through the mammalian proximal convoluted tubule was investigated by substituting lithium for sodium. Proximal convoluted rat Kidney tubules were perfusedin vivo with a Ringer solution containing 107 meq/liter lithium and 42 meq/liter sodium. Several micropunctures were made along the same nephron, and 3H] inulin, 14C] glucose,22Na, osmolality, Na, Mg and Cl were determined on each sample. Measurements of22Na showed that sodium and lithium diffusion rates were practically identical throughout the entire epithelium. A one- for-one exchange of sodium for lithium induced a negative trans-epithelial net flux of Na from plasma to lumen. However, despite this negative flux, a positive net water movement was measured from lumen to plasma. This movement was proportional both to glucose reabsorption and to the rise in the chloride concentration, two mechanisms known to be dependent on the trans-cellular movement of sodium. It was therefore concluded that the net water flux was a function of the unidirectional transcellular net flux of Na.Rabbit proximal convoluted tubules were perfusedin vitro with a solution containing 75 meq/liter Li and 75 meq/liter Na on both the luminal and peritubular sides. Under these conditions, the water reabsorption rate dropped to half its control value. Water movement was therefore a function of the external sodium concentration, which in turn probably regulates the intracellular Na concentration.
Keywords:Water fluxes  Na fluxes  proximal tubule microperfusion  Li substitution  rat kidney
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号