首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dolichyl monophosphate and its sugar derivatives in plants.
Authors:C T Brett and  L F Leloir
Abstract:A glucose acceptor was isolated from soya beans by extraction with chloroform/methanol (2:1, v/v), followed by DEAE-cellulose column chromatography of the extract. This acceptor could not be distinguished from liver dolichyl monophosphate by t.l.c. It could replace dolichyl monophosphate as a mannose acceptor with a liver enzyme and its glucosylated derivative could replace dolichyl monophosphate glucose as a glucose donor in the same system. These results, together with those already reported Pont Lezica, Brett, Romero Martinez & Dankert (1975) Biochem, Biophys. Res. Commun. 66, 980-987], indicate that the acceptor from soya bean is a dolichyl monophosphate. Gel filtration of its glucosylated derivative on Sephadex G-75 in the presence of sodium deoxycholate indicated that the acceptor contained 17 or 18 isoprene units. An enzyme preparation from pea seedlings was shown to use endogenous acceptors to form lipid phosphate sugars containing mannose and N-acetylglucosamine from GDP-mannose and UDP-N-acetylglucosamine. Chromatographic and degradative techniques indicated that the compounds formed were lipid monophosphate mannose, lipid pyrophosphate N-acetylglucosamine, lipid pyrophosphate chitobiose and a series of lipid pyrophosphate oligosaccharides containing both mannose and N-acetylglucosamine. None of these compounds was degraded by catalytic hydrogenation, and so the lipid moiety in each case was probably an alpha-saturated polyprenol. The endogenous acceptors for mannose and N-acetylglucosamine in peas may therefore be dolichyl monophosphate, as has been found in mammalian systems.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号