首页 | 本学科首页   官方微博 | 高级检索  
   检索      


MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae
Authors:Spiropoulos A  Bisson L F
Institution:Department of Viticulture and Enology, University of California, Davis, Davis, California 95616-8749, USA.
Abstract:Commercial isolates of Saccharomyces cerevisiae differ in the production of hydrogen sulfide (H(2)S) during fermentation, which has been attributed to variation in the ability to incorporate reduced sulfur into organic compounds. We transformed two commercial strains (UCD522 and UCD713) with a plasmid overexpressing the MET17 gene, which encodes the bifunctional O-acetylserine/O-acetylhomoserine sulfhydrylase (OAS/OAH SHLase), to test the hypothesis that the level of activity of this enzyme limits reduced sulfur incorporation, leading to H(2)S release. Overexpression of MET17 resulted in a 10- to 70-fold increase in OAS/OAH SHLase activity in UCD522 but had no impact on the level of H(2)S produced. In contrast, OAS/OAH SHLase activity was not as highly expressed in transformants of UCD713 (0.5- to 10-fold) but resulted in greatly reduced H(2)S formation. Overexpression of OAS/OAH SHLase activity was greater in UCD713 when grown under low-nitrogen conditions, but the impact on reduction of H(2)S was greater under high-nitrogen conditions. Thus, there was not a good correlation between the level of enzyme activity and H(2)S production. We measured cellular levels of cysteine to determine the impact of overexpression of OAS/OAH SHLase activity on sulfur incorporation. While Met17p activity was not correlated with increased cysteine production, conditions that led to elevated cytoplasmic levels of cysteine also reduced H(2)S formation. Our data do not support the simple hypothesis that variation in OAS/OAH SHLase activity is correlated with H(2)S production and release.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号