首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of salinity and clipping on biomass and competition between a halophyte and a glycophyte
Authors:Ashleigh A Gilbert  Lauchlan H Fraser
Institution:1. Department of Biology and Natural Resource Sciences, Thompson Rivers University, Kamloops, BC, Canada
Abstract:Global climate change will likely result in the reduction of water levels in intermountain wetlands and ponds, and the vegetation communities associated with these wetlands are an important forage source for livestock. Lowered water levels will not only constrict wetland plant communities, it will potentially change aquatic and soil salt concentrations. Such an increase in salinity can reduce plant growth and potentially affect competitive interactions between plants. A greenhouse experiment examined the effects of salinity and competition on the growth of two wet meadow grass species, Poa pratensis (a glycophyte) and Puccinellia nuttalliana (a halophyte). The following hypotheses based on published data were tested: (1) Biomass of both species will decrease with increasing concentration of salt; (2) root:shoot (R:S) ratio of P. pratensis will decrease with increasing salt concentration while R:S ratio of P. pratensis and P. nuttalliana will increase with clipping; (3) competitive importance will decrease for P. pratensis and P. nuttalliana with increasing salt concentration because salt induces a stress response and competitive importance is reduced in stressed environments. A factorial design included 3 plant treatments (P. nuttalliana alone, P. pratentsis alone, P. nuttalliana + P. pratensis) × 4 salinity rates (control; 5, 10, 15 g/L NaCl) × 2 clipping intensities (plants clipped or not clipped) for a total of 24 combinations replicated 6 times over a period of 90 days. We found a reduction in dry biomass as salinity increased, and this effect was greatest for P. pratensis. (1.94 g (SE 0.13) at 0 g/L NaCl to 0.22 g (SE 0.11) at 15 g/L NaCl). The R:S ratio of P. pratensis was reduced by salinity, but not for P. nuttalliana. Competitive importance of both species was reduced by clipping and by salinity, but the effect was greater and more consistent for P. pratensis. We conclude that salt concentration reduces plant growth and the effect of competition.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号