首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of dexamethasone on estrogen- and pregnancy-induced plasticity in rat uterine sympathetic nerves
Authors:P. Bianchimano  A. I. Frías  A. Richeri  M. M. Brauer
Affiliation:(1) Laboratorio de Biología Celular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, 11600, Uruguay;(2) Departamento de Biología Animal y Humana, Facultad de Biología, Universidad de La Habana, Havana, Cuba
Abstract:Estrogen and glucocorticoids are known to evoke opposing effects on the uterus. We analyzed the effects of dexamethasone (DEX) on uterine sympathetic denervation elicited by short- and long-term exposure to estrogen of intact prepubertal rats. We also studied the effects of DEX on the physiological degeneration of uterine sympathetic nerves at term pregnancy. Changes in innervation were assessed quantitatively by using computer-assisted methods on uterine cryostat tissue sections stained for tyrosine hydroxylase. At 24 h following treatment of prepubertal rats (25 days of age) with 1 μg or 2.5 μg estrogen, marked increases in uterine size and reductions in the percentage nerve area were observed. Co-administration of DEX (4 mg/kg) attenuated both these short-term estrogen-induced effects. Treatment of 19-day-old rats with a single dose of 25 μg estrogen provoked, at 26 days of age, a 54% reduction in the total nerve area. This reduction was abolished by the co-administration of nine doses of DEX (0.5 mg/kg) at 18–26 days of age. Treatment of rats with the same regime of DEX alone increased the total nerve area by 46% of the control values. Studies of control pregnant rats revealed the unexpected presence of intrauterine nerve fibers at term. Treatment of pregnant rats with six doses of DEX (4 mg/kg) at 16–21 days of age had no effects on the density of uterine sympathetic nerves. These results suggest that DEX has growth-promoting effects on immature uterine sympathetic nerves and may antagonize the degenerative effects elicited by long-term exposure to estrogen. This work was partially supported by PEDECIBA, Universidad de la República, Montevideo, Uruguay. The Third World Academy of Sciences (TWAS) supported the visit of A.I. Frías to the Laboratorio de Biología Celular (IIBCE, Montevideo, Uruguay).
Keywords:Adrenergic  Glucocorticoids  Stress  Inflammation  Eosinophils  Rat (Wistar-derived, female, albino)
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号