Water relations and drought tolerance of young African tamarind (Tamarindus indica L.) trees |
| |
Affiliation: | Department of Bioscience Engineering, Faculty of Science, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium |
| |
Abstract: | Tamarindus indica L. is an important multipurpose tree, indigenous to Africa, now introduced worldwide and known for its drought tolerance. The effects of drought on tamarinds, especially at seedling stage, are hardly investigated. However, this information is important for its conservation and domestication. In a growth chamber experiment we investigated the water relations of African tamarind seedlings under short-term soil drought stress. Initially tamarind seedlings can be considered as drought-tolerant at the expense of internal water storage reserves as they keep on transpiring (sap flow) and growing (diameter fluctuations). They finally spent 20% of their stem and root water storage reserves and experienced stem water potentials near − 3 MPa. Therefore, they can be classified as anisohydric. Their risk-taking behavior led to a high rate of seedling mortality (50%) because of whole plant hydraulic failure. They were not hydraulically efficient and they possessed low water storage capacity in stem and root (45%) due to high tissue density. When re-irrigated, remaining seedlings recovered slowly as a consequence of non-stomatal limitations and partial shoot dieback. Although tamarind seedlings show traits related to drought tolerance, we suggest that the species contains some water saving mechanisms. Contrasts with the co-occurring water-conserving tree species baobab (Adansonia digitata L.) are also discussed. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|