首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of transferrin receptor cycling by protein kinase C is independent of receptor phosphorylation at serine 24 in Swiss 3T3 fibroblasts
Authors:R J Davis  H Meisner
Institution:Department of Biochemistry, University of Massachusetts Medical School, Worcester 01605.
Abstract:Treatment of Swiss 3T3 fibroblasts with tumor-promoting phorbol diester or with platelet-derived growth factor caused the phosphorylation of the transferrin receptor by protein kinase C (Ca2+/phospholipid-dependent enzyme) at serine 24 and increased the cell surface expression of the transferrin receptor. The hypothesis that the regulation of transferrin receptor cycling by protein kinase C is causally related to the phosphorylation of the receptor at serine 24 was critically tested. Site-directed mutagenesis of the human transferrin receptor cDNA was used to substitute serine 24 with threonine or alanine residues in order to create phosphorylation defective receptors. Wild-type and mutated transferrin receptors were expressed in Swiss 3T3 fibroblasts using the retrovirus vector pZipNeoSV (X). These receptors were functionally active and caused the receptor-mediated endocytosis of diferric transferrin. Incubation of the fibroblasts with phorbol diester caused the phosphorylation of the wild-type (Ser-24) human transferrin receptor, but this treatment did not result in the phosphorylation of the mutated (Ala-24 and Thr-24) receptors. The cycling of the phosphorylation defective receptors was regulated by phorbol diester and platelet-derived growth factor in a manner similar to that observed for the wild-type receptor. We conclude that the regulation of transferrin receptor cycling by protein kinase C is independent of receptor phosphorylation at serine 24 in Swiss 3T3 fibroblasts.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号