首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities
Authors:Mathias R Zimmermann  Hubert H Felle
Institution:1.Botanisches Institut I,Justus-Liebig-Universit?t,Gie?en,Germany
Abstract:Using non-invasive ion-selective microprobes, that were placed in substomatal cavities, long-distance signalling has been investigated in intact Hordeum vulgare and Vicia faba seedlings. Heat (flame), applied to one leaf (S-leaf), triggers apoplastic ion activity (pH, pCa, pCl) transients in a distant leaf (T-leaf), all largely independent of simultaneously occurring action potential-like voltage changes. While apoplastic pCa and pH increase (Ca2+-, H+-activities decrease), pCl decreases (Cl-activity increases). As the signal transfer from the S- to the T-leaf is too fast to account for mass flow, the heat-induced pressure change is primarily responsible for changes in voltage (H+ pump deactivation) as well as for the ion fluxes. The pCa transient precedes the pCl- and pH responses, but not the voltage change. Since the apoplastic pCl decrease (Cl increase) occurs after the pCa increase (Ca2+ decrease) and after the depolarization, we argue that the Cl efflux is a consequence of the Ca2+ response, but has no part in the depolarization. Kinetic analysis reveals that pH- and pCl changes are interrelated, indicated by the action of the anion channel antagonist NPPB, which inhibits both pCl- and pH changes. It is suggested that efflux of organic anions into the apoplast causes the pH increase rather than the deactivation of the plasma membrane H+ pump. Since there is considerably more information in ion activity changes than in a single action- or variation potential and heat-induced ion fluxes occur more reliably than voltage changes, released by milder stimuli, they are considered systemic signalling components superior to voltage.
Keywords:Barley  Heat stimuli  Ion-Selective microelectrodes  Systemic signalling  Variation potential            Vicia
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号