首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Roles of Interaction between Actuator and Nucleotide Binding Domains of Sarco(endo)plasmic Reticulum Ca2+-ATPase as Revealed by Single and Swap Mutational Analyses of Serine 186 and Glutamate 439
Authors:Xiaoyu Liu  Takashi Daiho  Kazuo Yamasaki  Guoli Wang  Stefania Danko  and Hiroshi Suzuki
Institution:From the Department of Biochemistry, Asahikawa Medical College, Asahikawa 078-8510, Japan
Abstract:Roles of hydrogen bonding interaction between Ser186 of the actuator (A) domain and Glu439 of nucleotide binding (N) domain seen in the structures of ADP-insensitive phosphorylated intermediate (E2P) of sarco(endo)plasmic reticulum Ca2+-ATPase were explored by their double alanine substitution S186A/E439A, swap substitution S186E/E439S, and each of these single substitutions. All the mutants except the swap mutant S186E/E439S showed markedly reduced Ca2+-ATPase activity, and S186E/E439S restored completely the wild-type activity. In all the mutants except S186E/E439S, the isomerization of ADP-sensitive phosphorylated intermediate (E1P) to E2P was markedly retarded, and the E2P hydrolysis was largely accelerated, whereas S186E/E439S restored almost the wild-type rates. Results showed that the Ser186-Glu439 hydrogen bond stabilizes the E2P ground state structure. The modulatory ATP binding at sub-mm~mm range largely accelerated the EP isomerization in all the alanine mutants and E439S. In S186E, this acceleration as well as the acceleration of the ATPase activity was almost completely abolished, whereas the swap mutation S186E/E439S restored the modulatory ATP acceleration with a much higher ATP affinity than the wild type. Results indicated that Ser186 and Glu439 are closely located to the modulatory ATP binding site for the EP isomerization, and that their hydrogen bond fixes their side chain configurations thereby adjusts properly the modulatory ATP affinity to respond to the cellular ATP level.Sarcoplasmic reticulum Ca2+-ATPase (SERCA1a)2 is a representative member of P-type ion-transporting ATPases and catalyzes Ca2+ transport coupled with ATP hydrolysis (Fig. 1) (19). In the catalytic cycle, the enzyme is activated by binding of two Ca2+ ions at the transport sites (E2 to E1Ca2, steps 1–2) and then autophosphorylated at Asp351 with MgATP to form ADP-sensitive phosphoenzyme (E1P, step 3), which can react with ADP to regenerate ATP. Upon formation of this EP, the bound Ca2+ ions are occluded in the transport sites (E1PCa2). The subsequent isomeric transition to ADP-insensitive form (E2P) results in a change in the orientation of the Ca2+ binding sites and reduction of their affinity, and thus Ca2+ release into lumen (steps 4 and 5). Finally, the hydrolysis takes place and returns the enzyme into an unphosphorylated and Ca2+-unbound form (E2, step 6). E2P can also be formed from Pi in the presence of Mg2+ and the absence of Ca2+ by reversal of its hydrolysis.Open in a separate windowFIGURE 1.Reaction cycle of sarco(endo)plasmic reticulum Ca2+-ATPase.The cytoplasmic three domains N, A, and P largely move and change their organization states during the Ca2+ transport cycle (1022). These changes are linked with the rearrangements in the transmembrane helices. In the EP isomerization (loss of ADP sensitivity) and Ca2+ release, the A domain largely rotates (by ~110° parallel to membrane plane), intrudes into the space between the N and P domains, and the P domain largely inclines toward the A domain. Thus in E2P, these domains produce the most compactly organized state (see Fig. 2 for the change E1Ca2·AlF4?·ADP →E2·MgF42? as the model for the overall process E1PCa2·ADP?E2·Pi).Open in a separate windowFIGURE 2.Structure of SERCA1a and formation of Ser186-Glu439 hydrogen bond between the A and N domains. The coordinates for the structures E1Ca2·AlF4?·ADP, (the analog for the transition state of the phosphoryl transfer E1PCa2·ADP?, left panel) and E2·MgF42? (E2·Pi analog (21), right panel) of Ca2+-ATPase were obtained from the Protein Data Bank (PDB accession code 1T5T and 1WPG, respectively (12, 14)). The arrows indicate approximate movements of the A and P domains in the change from E1Ca2·AlF4? ·ADP to E2·MgF42?. Ser186 and Glu439 are depicted as van der Waals spheres. These two residues form a hydrogen bond in E2·MgF42? (see inset). The phosphorylation site Asp351, two Ca2+ at the transport sites and ADP with AlF4? at the catalytic site in E1Ca2·AlF4?·ADP, MgF42? bound at the catalytic site in E2·MgF42? are depicted. The TGES184 loop and Val200 loop of the A domain and Tyr122 on the top part of M2 are shown. These elements produce three interaction networks between A and P domains and M2 (Tyr122) in E2·MgF42? (2326). M1′ and M1-M10 are also indicated.We have found that the interactions between the A and P domains at the Val200-loop (Asp196-Asp203) with the residues of the P domain (Arg678/Glu680/Arg656/Asp660) (23) and at the Tyr122 hydrophobic cluster (2426) (see Fig. 2) play critical roles for Ca2+ deocclusion/release in E2PCa2E2P + 2Ca2+ after the loss of ADP sensitivity (E1PCa2 to E2PCa2 isomerization). The proper length of the A/M1′ linker is critical for inducing the inclining motion of the A and P domains for the Ca2+ deocclusion and release from E2PCa2 (27, 28). The importance of the interdomain interaction between Arg678 (P) and Asp203 (A) in stabilizing the E2P and E2 intermediates and its influence on modulatory ATP activation were pointed out by the mutation R678A (29). Regarding the N domain, the importance of Glu439 in the EP isomerization and E2P hydrolysis was previously noted by its alanine substitution, and possible importance of its interaction with Ser186 on the A domain has been suggested since Glu439 forms a hydrogen bond with Ser186 in the E2P analog structures (29) (see Fig. 2). The Darier disease-causing mutations of Ser186 of SERCA2b, S186P and S186F also alter the kinetics of the EP processing and its importance as the residue in the immediate vicinity of TGES184 has been pointed out (30, 31). Notably also, Glu439 is situated near the adenine binding pocket and its importance in the ATP binding and ATP-induced structural change have been shown (32, 33). In the structure E2(TG)AMPPCP (E2·ATP), Glu439 interacts with the modulatory ATP binding via Mg2+, and is involved in the acceleration of the Ca2+-ATPase cycle (16).Considering these critical findings on each of Glu439 and Ser186, it is crucial to reveal the role of the Ser186-Glu439 hydrogen-bonding interaction between the A and N domains in the EP processing and its ATP modulation (i.e. regulatory ATP-induced acceleration). We therefore made a series of mutants on both Ser186 and Glu439 including the swap substitution mutant, S186A, E439A, S186A/E439A, S186E, E439S, S186E/E439S, and explored their kinetic properties. Results showed that the Ser186-Glu439 hydrogen bond is critical for the stabilization of the E2P ground state structure, and possibly functioning as to make the E2P resident time long enough for Ca2+ release (E2PCa2E2P + 2Ca2+) thus to avoid its hydrolysis without Ca2+ release. Results also revealed that the side-chain configurations of Ser186 and Glu439 are fixed by their hydrogen bond, thereby conferring the proper modulatory ATP binding to occur at the cellular ATP level to accelerate the rate-limiting EP isomerization.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号