首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intersectin-2L Regulates Caveola Endocytosis Secondary to Cdc42-mediated Actin Polymerization
Authors:Irene K Klein  Dan N Predescu  Tiffany Sharma  Ivana Knezevic  Asrar B Malik  and Sanda Predescu
Institution:From the §Department of Pharmacology, Rush University Medical Center, and ;the Department of Pharmacology, University of Illinois, Chicago, Illinois 60612
Abstract:Here we addressed the role of intersectin-2L (ITSN-2L), a guanine nucleotide exchange factor for the Rho GTPase Cdc42, in the mechanism of caveola endocytosis in endothelial cells (ECs). Immunoprecipitation and co-localization studies showed that ITSN-2L associates with members of the Cdc42-WASp-Arp2/3 actin polymerization pathway. Expression of Dbl homology-pleckstrin homology (DH-PH) region of ITSN-2L (DH-PHITSN-2L) induced specific activation of Cdc42, resulting in formation of extensive filopodia, enhanced cortical actin, as well as a shift from G-actin to F-actin. The “catalytically dead” DH-PH domain reversed these effects and induced significant stress fiber formation, without a detectable shift in actin pools. A biotin assay for caveola internalization indicated a significant decrease in the uptake of biotinylated proteins in DH-PHITSN-2L-transfected cells compared with control and 1 μm jasplakinolide-treated cells. ECs depleted of ITSN-2L by small interfering RNA, however, showed decreased Cdc42 activation and actin remodeling similar to the defective DH-PH, resulting in 62% increase in caveola-mediated uptake compared with controls. Thus, ITSN-2L, a guanine nucleotide exchange factor for Cdc42, regulates different steps of caveola endocytosis in ECs by controlling the temporal and spatial actin polymerization and remodeling sub-adjacent to the plasma membrane.The polymerization of actin has a central role in clathrin- and caveola-mediated endocytosis (1). Studies have shown a number of protein-protein interactions that suggest a functional relationship between the actin cytoskeleton and endocytic machinery; however, the underlying mechanisms remain unclear. ITSN-2L,2 a multifunctional domain protein with two Epsin 15 homology domains, a central coiled-coil region followed by five consecutive Src homology 3 domains, a Dbl homology (DH), a pleckstrin homology (PH), and finally a C2 domain, interacts via the Src homology 3 region with the ubiquitously expressed neural Wiskott-Aldrich syndrome protein (N-WASP) that stimulates actin nucleation through Arp 2/3 complex activation (2). ITSN-2L interaction with N-WASP in turn induces activation of N-WASP in a Cdc42-dependent manner (2, 3). In this way, ITSN-2L on the basis of its DH domain acts as a GEF for the small Rho GTPase Cdc42, similar to its neuronal counterpart ITSN-1L (2, 4). The DH domain of ITSN-2L shows high sequence homology with the corresponding region of ITSN-1L (5), and it possesses all the amino acid residues required for its GEF enzymatic activity (6). Both long ITSN isoforms display immediately distal to the DH domain a PH domain, which may thereby modulate the intrinsic catalytic activity of the DH region (68). It has been shown that the PH domain enhances up to 100-fold the DH catalytic activity for some Dbl proteins compared with that measured for DH alone in vitro, whereas for other Dbl proteins the presence of the PH domain negatively regulates GEF activity of the DH region (9). This latter function is apparently mediated by interactions with phosphoinositides (7, 9). However, the PH sequence was shown to be dispensable for GEF activity of ITSN-2L in vitro, but it enhanced the ability to activate Cdc42 in vivo (9). Despite high sequence conservation among Rho GTPases, long ITSN isoforms apparently induce selective activation of Cdc42 due to the overall increasing size of the specificity residues of the GTPases (Cdc42 < Rac1 < RhoA) and the inability of ITSN to accommodate in an analogous position the larger size amino acid chains found in Rac1 and RhoA (10).ITSN-2L, like its alternatively spliced short isoform, is widely expressed in human tissue, and it shows subcellular distribution similar to components of the endocytic machinery (5). In COS-7 cells overexpressing ITSN-2 isoforms, clathrin-mediated transferrin uptake was blocked, consistent with their involvement in the regulation of clathrin-mediated endocytosis (5). By contrast, ITSN-2L overexpression in Jurkat cells stimulated T cell antigen receptor (TCR) internalization, whereas truncated ITSN-2L, deleted for the DH domain, caused significant inhibition of TCR internalization (2). The stimulatory effect of ITSN-2L on TCR endocytosis may be secondary to the ability of ITSN-2L to bind through its Src homology 3 domains the proline-rich domain of N-WASP followed by Cdc42-mediated actin polymerization (2). Although more work is needed to clarify these inconsistencies, both of these studies suggest that ITSN-2L may regulate endocytosis and function cooperatively with N-WASP and Cdc42 to link WASP-mediated actin polymerization to the endocytic machinery (2).Live cultured fibroblast imaging showed that actin polymerization as regulated by the WASP-Arp2/3 complex participates in the late stage of clathrin-mediated endocytosis (11). Therefore, we reasoned that ITSN-2L, as a specific activator of Cdc42, may be essential for actin cytoskeleton polymerization and caveola internalization in ECs. ECs are particularly rich in caveola, and caveola-mediated endocytosis is a fundamental step in mediating the transcytosis of proteins (12, 13), but the mechanisms of caveola-mediated endocytosis and the essential proteins involved remain enigmatic. In this study, we addressed the role of ITSN-2L in the mechanism of caveola internalization in ECs. Our data employing morphological, biochemical, and functional approaches show that ITSN-2L on the basis of Cdc42-mediated spatial actin polymerization is required in the mechanism of caveola-mediated endocytosis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号