首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Human Malaria Parasite Plasmodium falciparum Is Not Dependent on Host Coenzyme A Biosynthesis
Authors:Christina Spry and  Kevin J Saliba
Institution:From the Research School of Biology and ;§Medical School, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT 0200, Australia
Abstract:Pantothenate, a precursor of the fundamental enzyme cofactor coenzyme A (CoA), is essential for growth of the intraerythrocytic stage of human and avian malaria parasites. Avian malaria parasites have been reported to be incapable of de novo CoA synthesis and instead salvage CoA from the host erythrocyte; hence, pantothenate is required for CoA biosynthesis within the host cell and not the parasite itself. Whether the same is true of the intraerythrocytic stage of the human malaria parasite, Plasmodium falciparum, remained to be established. In this study we investigated the metabolic fate of 14C]pantothenate within uninfected and P. falciparum-infected human erythrocytes. We provide evidence consistent with normal human erythrocytes, unlike rat erythrocytes (which have been reported to possess an incomplete CoA biosynthesis pathway), being capable of CoA biosynthesis from pantothenate. We also show that CoA biosynthesis is substantially higher in P. falciparum-infected erythrocytes and that P. falciparum, unlike its avian counterpart, generates most of the CoA synthesized in the infected erythrocyte, presumably necessitated by insufficient CoA biosynthesis in the host erythrocyte. Our data raise the possibility that malaria parasites rationalize their biosynthetic activity depending on the capacity of their host cell to synthesize the metabolites they require.Pantothenate (vitamin B5) is an essential nutrient for the virulent human malaria parasite Plasmodium falciparum, required to support the rapid growth and replication of the parasite during the intraerythrocytic stage of its life cycle (13). In bacteria, plants, and mammalian tissues, pantothenate serves as a precursor of coenzyme A (CoA),3 an essential enzyme cofactor involved in numerous metabolic reactions in the cell. Pantothenate is converted to CoA via five universal enzyme-mediated steps (see Fig. 1).Open in a separate windowFIGURE 1.The CoA biosynthesis pathway.Several decades ago, Trager (4) showed that pantothenate supported the survival of the avian malaria parasite Plasmodium lophurae during its development within duck erythrocytes in vitro. Trager (5, 6) later demonstrated, however, that CoA, and not pantothenate, stimulated exoerythrocytic growth of the intraerythrocytic stage of P. lophurae, and proposed that avian malaria parasites are incapable of metabolizing pantothenate to CoA, and instead rely on CoA synthesized by the host erythrocyte. In support of this proposal, CoA biosynthesis enzymes are readily detectable in duck erythrocytes, but appear to be absent from P. lophurae parasites isolated from their host erythrocyte (7, 8). Pantothenate is therefore required by the P. lophurae-infected duck erythrocyte for CoA biosynthesis within the host cell and not the parasite itself.By contrast with nucleated avian erythrocytes, mammalian erythrocytes are thought to be incapable of CoA biosynthesis. In the only study on the subject, Annous and Song (9) reported that although pantothenate is phosphorylated within rat erythrocytes (the first step in CoA biosynthesis), there is no evidence for the subsequent steps of the CoA biosynthesis pathway. Saliba et al. (10) confirmed that human erythrocytes similarly phosphorylate pantothenate, but did not investigate whether CoA synthesis also occurs in the cells. A lack of CoA biosynthesis in mammalian erythrocytes would seemingly place the burden of CoA synthesis squarely on malaria parasites that infect mammals (such as P. falciparum), contrary to the situation in birds. Although Saliba et al. (10) have shown that P. falciparum is capable of performing the first step in CoA biosynthesis, it remains to be established whether the parasite can metabolize the 4′-phosphopantothenate generated from pantothenate to CoA or, like P. lophurae, relies on CoA synthesized in the host erythrocyte for its normal growth and replication.In this study we followed the metabolism of pantothenate within uninfected human erythrocytes, P. falciparum-infected human erythrocytes, and isolated P. falciparum parasites. We provide evidence that both uninfected erythrocytes (which we show do take up pantothenate, albeit very slowly) and P. falciparum-infected erythrocytes synthesize CoA from pantothenate. CoA biosynthesis is, however, dramatically higher in the P. falciparum-infected cell. Furthermore, we show that P. falciparum parasites synthesize CoA in the absence of the host erythrocyte, and hence, by contrast with avian malaria parasites, the human malaria parasite does not rely on the host erythrocyte for CoA.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号