首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Substrate specificity and reaction mechanism of human glycoasparaginase. The N-glycosidic linkage of various glycoasparagines is cleaved through a reaction mechanism similar to L-asparaginase.
Authors:V Kaartinen  T Mononen  R Laatikainen  I Mononen
Institution:Department of Clinical Chemistry, Kuopio University Central Hospital, Finland.
Abstract:Human glycoasparaginase (N4-(beta-N-acetyl-D-glucosaminyl)-L-asparaginase, EC 3.5.1.26) hydrolyzes a series of compounds that contain L-asparagine residue with free alpha-amino and alpha-carboxyl groups. Substrates include high mannose and complex type glycoasparagines as well as those that lack the di-N-acetylchitobiose moiety, L-aspartic acid beta-methyl ester and L-aspartic acid beta-hydroxamate. The enzyme is inactive toward L-asparagine and L-glutamine and glycoasparagines containing substituted alpha-amino and/or alpha-carboxyl groups. In the presence of the acyl acceptor hydroxylamine, glycoasparaginase catalyzes the synthesis of L-aspartic acid beta-hydroxamate from aspartyl-glucosamine, L-aspartic acid beta-methyl ester, and L-aspartic acid. 13C NMR studies using 18O-labeled L-aspartic acid demonstrate that glycoasparaginase catalyzes an oxygen exchange between water and the carboxyl group at C-4 of L-aspartic acid. These results indicate that glycoasparaginase reacts as an exo-hydrolase toward the L-asparagine moiety of the substrates and the free alpha-amino and alpha-carboxyl groups are required for the enzyme reaction. The results are consistent with an L-asparaginase-like reaction pathway which involves a beta-aspartyl enzyme intermediate. Since glycoasparaginase is active toward a series of structurally different glycoasparagines, we suggest the revised systematic name of N4-(beta-glycosyl)-L-asparaginase for the enzyme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号