首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The knock-down of ERCC1 but not of XPF causes multinucleation
Authors:Rageul Julie  Frëmin Christophe  Ezan Frédéric  Baffet Georges  Langouët Sophie
Institution:EA4427 SeRAIC (Signaling and Responses to Infectious and Chemical Agents), Institut de Recherche en Santé, Environnement et Travail, Université de Rennes 1, 2 avenue du Pr L. Bernard, 35043 Rennes Cedex, France.
Abstract:Excision repair cross complementing gene 1 (ERCC1) associated with xeroderma pigmentosum group F (XPF) is a heterodimeric endonuclease historically involved in the excision of bulky helix-distorting DNA lesions during nucleotide excision repair (NER) but also in the repair of DNA interstrand crosslinks. ERCC1 deficient mice show severe growth retardation associated with premature replicative senescence leading to liver failure and death at four weeks of age. In humans, ERCC1 is overexpressed in hepatocellular carcinoma and in the late G1 phase of hepatocyte cell cycle. To investigate whether ERCC1 could be involved in human hepatocyte cell growth and cell cycle progression, we knocked-down ERCC1 expression in the human hepatocellular carcinoma cell line Huh7 by RNA interference. ERCC1 knocked-down cells were delayed in their cell cycle and became multinucleated. This phenotype was rescued by ERCC1 overexpression. Multinucleation was not liver specific since it also occurred in HeLa and in human fibroblasts knocked-down for ERCC1. Multinucleated cells arose after drastic defects leading to flawed metaphase and cytokinesis. Interestingly, multinucleation did not appear after knocking-down other NER enzymes such as XPC and XPF, suggesting that NER deficiency was not responsible for multinucleation. Moreover, XPF mutant human fibroblasts formed multinucleated cells after ERCC1 knock-down but not after XPF knock-down. Therefore our results seem consistent with ERCC1 being involved in multinucleation but not XPF. This work reveals a new role for ERCC1 distinct from its known function in DNA repair, which may be independent of XPF. The role for ERCC1 in mitotic progression may be critical during development, particularly in humans.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号