Identification of a high-affinity anti-phosphoserine antibody for the development of a homogeneous fluorescence polarization assay of protein kinase C |
| |
Authors: | Wu J J Yarwood D R Pham Q Sills M A |
| |
Affiliation: | Immunex Corporation, Seattle, WA 98101, USA. jinziwu@yahoo.com |
| |
Abstract: | In the last few years, fluorescence polarization (FP) has been applied to the development of robust, homogeneous, high throughput assays in molecular recognition research, such as ligand-protein interactions. Recently, this technology has been applied to the development of homogeneous tyrosine kinase assays, since there are high-affinity anti-phosphotyrosine antibodies available. Unlike tyrosine kinases, application of FP to assay development for serine/threonine kinases has been impeded because of lack of high-affinity anti-phosphoserine/threonine antibodies. In the present study, we report the discovery of a high-affinity, monoclonal anti-phosphoserine antibody, 2B9, with a Kd of 250 +/- 34 pM for a phosphoserine-containing peptide tracer, fluorescein-RFARKGS(PO(4))LRQKNV. Our data suggest that 2B9 is selective for fluorescein-RFARKGS(PO(4))LRQKNV. The antibody and tracer have been used for the development of a competitive FP assay for protein kinase C (PKC) in 384-well plates. Phosphatidylserine, which enhances the kinase activity of PKC in a Ca(2+)-dependent manner and has a structure similar to that of phosphoserine, did not interfere with binding of the peptide tracer to the antibody in the FP assay. The data indicate that the FP assay is more sensitive and robust than the scintillation proximity assay for PKC. The FP assay developed here can be used for rapid screening of hundreds of thousands of compounds for discovery of therapeutic leads for PKC-related diseases. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|