首页 | 本学科首页   官方微博 | 高级检索  
     


The strain energy function in axial plant growth
Authors:E. L. McCoy
Affiliation:(1) Department of Agronomy, Ohio State University, Ohio Agricultural Research and Development Center, 44691 Wooster, OH, USA
Abstract:A model for axial plant growth is formulated based on conservation of energy. The model derivation assumes that a strain energy function exists to describe the dissipation of potential energy associated with water uptake, mechanical deformation, and biosynthesis during growth. The derivation does not, however, make any further assumption on the mathematical form of this constitutive relation. The model is employed to investigate possible forms of the strain energy function as applied to steady root growth. Solutions of the nonlinear partial differential equations governing growth are given for cases when the third derivative of the strain energy function is >, <, or =0. These three cases encompass a multitude of mathematical forms of the strain energy function. The resulting solutions are compared with the realization of steady axial root growth. The results of this analysis indicate that a quadratic form of the strain energy function best described steady growth. This conclusion is consistent with previous assumptions on the form of constitutive relations for growth, and allows further interpretation on the water relations, mechanical, and biosynthetic energies associated with plant growth.Research support provided by state and federal funds appropriated to the OSU/OARDC. Journal article no. 12–88
Keywords:Plant growth bioenergetics  Plant root growth  Constitutive growth equations
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号