首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced uridine diphosphate N-acetylglucosamine production using whole-cell catalysis
Authors:Hanjie Ying  Xiaochun Chen  Haiping Cao  Jian Xiong  Yuan Hong  Jianxin Bai  Zhenjiang Li
Affiliation:(1) State Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, People’s Republic of China
Abstract:Uridine diphosphate N-acetylglucosamine (UDPAG) can be produced by chemical, enzymatic, chemoenzymatic, and fermentative methods. In this study, we used whole-cell catalysis method to produce UDPAG for the first time by Saccharomyces cerevisiae. In order to increase the ATP utilization efficiency and UDPAG conversion yield, the response surface methodology was applied to optimize the whole-cell catalytic conditions for UDPAG production. Firstly, effects of uridine 5′-monophosphate (5′-UMP), glucosamine, vitamin B1, glycerol, magnesium chloride, potassium chloride, temperature, sodium dihydrogen phosphate, sodium acetate, fructose, and pH on UDPAG production were evaluated by a fractional factorial design. Results showed that UDPAG production was mainly affected by sodium dihydrogen phosphate, temperature, and vitamin B1. Then, the concentrations of sodium dihydrogen phosphate and vitamin B1 and temperature were further investigated with a central composite design and response surface analysis. The cultivation conditions to obtain the optimal UDPAG production were determined: sodium dihydrogen phosphate, 31.2 g/L; temperature, 29°C, and vitamin B1, 0.026 g/L. This optimization strategy led to an enhancement of UDPAG production from 2.51 to 4.25 g/L, yield from 44.6% to 75.6% based on the initial 5′-UMP concentration, and ATP utilization efficiency from 7.43% to 12.6%.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号