首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extracellular Allosteric Na Binding to the Na,K-ATPase in Cardiac Myocytes
Authors:Alvaro Garcia  Natasha AS Fry  Keyvan Karimi  Chia-chi Liu  Hans-Jürgen Apell  Helge H Rasmussen  Ronald J Clarke
Institution: Department of Cardiology, Royal North Shore Hospital, Sydney, Australia; Faculty of Biology, University of Konstanz, Konstanz, Germany;§ School of Chemistry, University of Sydney, Sydney, Australia; Kolling Institute, University of Sydney, Sydney, Australia
Abstract:Whole-cell patch-clamp measurements of the current, Ip, produced by the Na+,K+-ATPase across the plasma membrane of rabbit cardiac myocytes show an increase in Ip over the extracellular Na+ concentration range 0–50 mM. This is not predicted by the classical Albers-Post scheme of the Na+,K+-ATPase mechanism, where extracellular Na+ should act as a competitive inhibitor of extracellular K+ binding, which is necessary for the stimulation of enzyme dephosphorylation and the pumping of K+ ions into the cytoplasm. The increase in Ip is consistent with Na+ binding to an extracellular allosteric site, independent of the ion transport sites, and an increase in turnover via an acceleration of the rate-determining release of K+ to the cytoplasm, E2(K+)2 → E1 + 2K+. At normal physiological concentrations of extracellular Na+ of 140 mM, it is to be expected that binding of Na+ to the allosteric site would be nearly saturated. Its purpose would seem to be simply to optimize the enzyme’s ion pumping rate under its normal physiological conditions. Based on published crystal structures, a possible location of the allosteric site is within a cleft between the α- and β-subunits of the enzyme.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号