首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Flexibility of the Bacterial Chaperone Trigger Factor in Microsecond-Timescale Molecular Dynamics Simulations
Authors:Andrew S Thomas  Suifang MaoAdrian H Elcock
Institution:Department of Biochemistry, University of Iowa, Iowa City, Iowa
Abstract:The bacterial chaperone trigger factor (TF) is the first chaperone to be encountered by a nascent protein chain as it emerges from the ribosome exit tunnel. Experimental results suggest that TF possesses considerable conformational flexibility, and in an attempt to provide an atomic-level view of this flexibility, we have performed independent 1.5-μs molecular dynamics simulations of TF in explicit solvent using two different simulation force fields (OPLS-AA/L and AMBER ff99SB-ILDN). Both simulations indicate that TF possesses tremendous flexibility, with huge excursions from the crystallographic conformation caused by reorientations of the protein’s constituent domains; both simulations also predict the formation of extensive contacts between TF’s PPIase domain and the Arm 1 domain that is involved in nascent-chain binding. In the OPLS simulation, however, TF rapidly settles into a very compact conformation that persists for at least 1 μs, whereas in the AMBER simulation, it remains highly dynamic; additional simulations in which the two force fields were swapped suggest that these differences are at least partly attributable to sampling issues. The simulation results provide potential rationalizations of a number of experimental observations regarding TF’s conformational behavior and have implications for using simulations to model TF’s function on translating ribosomes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号