首页 | 本学科首页   官方微博 | 高级检索  
     


Activation and Proton Transport Mechanism in Influenza A M2 Channel
Authors:Chenyu Wei  Andrew Pohorille
Affiliation: NASA Ames Research Center, Moffett Field, California; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
Abstract:Molecular dynamics trajectories 2 μs in length have been generated for the pH-activated, tetrameric M2 proton channel of the influenza A virus in all protonation states of the pH sensor located at the His37 tetrad. All simulated structures are in very good agreement with high-resolution structures. Changes in the channel caused by progressive protonation of His37 provide insight into the mechanism of proton transport. The channel is closed at both His37 and Trp41 sites in the singly and doubly protonated states, but it opens at Trp41 upon further protonation. Anions access the charged His37 and by doing so stabilize the protonated states of the channel. The narrow opening at the His37 site, further blocked by anions, is inconsistent with the water-wire mechanism of proton transport. Instead, conformational interconversions of His37 correlated with hydrogen bonding to water molecules indicate that these residues shuttle protons in high-protonation states. Hydrogen bonds between charged and uncharged histidines are rare. The valve at Val27 remains on average quite narrow in all protonation states but fluctuates sufficiently to support water and proton transport. A proton transport mechanism in which the channel, depending on pH, opens at either the histidine or valine gate is only partially supported by the simulations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号