GerN, an endospore germination protein of Bacillus cereus, is an Na(+)/H(+)-K(+) antiporter |
| |
Authors: | Southworth T W Guffanti A A Moir A Krulwich T A |
| |
Affiliation: | Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom. |
| |
Abstract: | GerN, a Bacillus cereus spore germination protein, exhibits homology to a widely distributed group of putative cation transporters or channel proteins. GerN complemented the Na(+)-sensitive phenotype of an Escherichia coli mutant that is deficient in Na(+)/H(+) antiport activity (strain KNabc). GerN also reduced the concentration of K(+) required to support growth of an E. coli mutant deficient in K(+) uptake (strain TK2420). In a fluorescence-based assay of everted E. coli KNabc membrane vesicles, GerN exhibited robust Na(+)/H(+) antiport activity, with a K(m) for Na(+) estimated at 1.5 mM at pH 8.0 and 25 mM at pH 7.0. Li(+), but not K(+), served as a substrate. GerN-mediated Na(+)/H(+) antiport was further demonstrated in everted vesicles as energy-dependent accumulation of (22)Na(+). GerN also used K(+) as a coupling ion without completely replacing H(+), as indicated by partial inhibition by K(+) of H(+) uptake into right-side-out vesicles loaded with Na(+). K(+) translocation as part of the antiport was supported by the stimulatory effect of intravesicular K(+) on (22)Na(+) uptake by everted vesicles and the dependence of GerN-mediated (86)Rb(+) efflux on the presence of Na(+) in trans. The inhibitory patterns of protonophore and thiocyanate were most consistent with an electrogenic Na(+)/H(+)-K(+) antiport. GerN-mediated Na(+)/H(+)-K(+) antiport was much more rapid than GerN-mediated Na(+)/H(+) antiport. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|