首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of genotyping strategy on the accuracy of genomic prediction in simulated populations of purebred swine
Affiliation:1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P. R. China;2. Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, P. R. China;3. Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
Abstract:Single-step genomic BLUP (ssGBLUP) has been widely used in genomic evaluation due to relatively higher prediction accuracy and simplicity of use. The prediction accuracy from ssGBLUP depends on the amount of information available concerning both genotype and phenotype. This study investigated how information on genotype and phenotype that had been acquired from previous generations influences the prediction accuracy of ssGBLUP, and thus we sought an optimal balance about genotypic and phenotypic information to achieve a cost-effective and computationally efficient genomic evaluation. We generated two genetically correlated traits (h2 = 0.35 for trait A, h2 = 0.10 for trait B and genetic correlation 0.20) as well as two distinct populations mimicking purebred swine. Phenotypic and genotypic information in different numbers of previous generations and different genotyping rates for each litter were set to generate different datasets. Prediction accuracy was evaluated by correlating genomic estimated breeding values with true breeding values for genotyped animals in the last generation. The results revealed a negligible impact of previous generations that lacked genotyped animals on the prediction accuracy. Phenotypic and genotypic data, including the most recent three to four generations with a genotyping rate of 40% or 50% for each litter, could lead to asymptotic maximum prediction accuracy for genotyped animals in the last generation. Single-step genomic best linear unbiased prediction yielded an optimal balance about genotypic and phenotypic information to ensure a cost-effective and computationally efficient genomic evaluation of populations of polytocous animals such as purebred pigs.
Keywords:single-step genomic best linear unbiased prediction  phenotypic records  genotyping rating  genomic evaluation  swine breeding
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号