首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular determinants for the distinct pH sensitivity of Kir1.1 and Kir4.1 channels
Authors:Xu H  Yang Z  Cui N  Giwa L R  Abdulkadir L  Patel M  Sharma P  Shan G  Shen W  Jiang C
Affiliation:Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA.
Abstract:Kir1.1 (ROMK1) is inhibited by hypercapnia andintracellular acidosis with midpoint pH for channel inhibition(pKa) of ~6.7. Another close relative,Kir4.1 (BIR10), is also pH sensitive with much lower pH sensitivity(pKa ~6.0), although it shares a high sequencehomology with Kir1.1. To find the molecular determinants for thedistinct pH sensitivity, we studied the structure-functional relationship using site-directed mutagenesis. AnNH2-terminal residue (Lys-53) was found to be responsiblefor the low pH sensitivity in Kir4.1. Mutation of this lysine to valine(K53V), a residue seen at the same position in Kir1.1, markedlyincreased channel sensitivity to CO2/pH. Reverse mutationon Kir1.1 (V66K) decreased the CO2/pH sensitivities.Interestingly, mutation of these residues to glutamate greatly enhancedthe pH sensitivity in both channels. Other contributors to the distinctpH sensitivity were histidine residues in the COOH terminus, whosenumbers are fewer in Kir4.1 than Kir1.1. Mutation of two of thesehistidine residues in Kir1.1 (H342Q/H354N) reduced CO2/pHsensitivities, whereas the creation of two histidines (S328H/G340H) inKir4.1 increased the CO2/pH sensitivities. Combinedmutations of the lysine and histidine residues in Kir4.1(K53V/S328H/G340H) gave rise to a channel that had CO2/pHsensitivities almost identical to those of the wild-type Kir1.1. Thusthe residues demonstrated in our current studies are likely themolecular basis for the distinct pH sensitivity between Kir1.1 andKir4.1.

Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号