首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Neuroprotective MK801 is associated with nitric oxide synthase during hypoxia/reoxygenation in rat cortical cell cultures.
Authors:Hsueh-Meei Huang  Chiung-Chyi Shen  Hsiu-Chung Ou  Jean-Yuan Yu  Huan-Lian Chen  Jon-Son Kuo  Shon-Jean Hsieh
Institution:Department of Education and Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China. hhuang@burke.org
Abstract:The neuroprotective effect of MK801 against hypoxia and/or reoxygenation-induced neuronal cell injury and its relationship to neuronal nitric oxide synthetase (nNOS) expression were examined in cultured rat cortical cells. Treatment of cortical neuronal cells with hypoxia (95% N(2)/5% CO(2)) for 2 h followed by reoxygenation for 24 h induced a release of lactate dehydrogenase (LDH) into the medium, and reduced the protein level of MAP-2 as well. MK801 attenuated the release of LDH and the reduction of the MAP-2 protein by hypoxia, suggesting a neuroprotective role of MK801. MK801 also diminished the number of nuclear condensation by hypoxia/reoxygenation. The NOS inhibitors 7-nitroindazole (7-NI) and N (G)-nitro-L-arginine methyl ester (L-NAME), as well as the Ca(2+) channel blocker nimodipine, reduced hypoxia-induced LDH, suggesting that nitric oxide (NO) and calcium homeostasis contribute to hypoxia and/or the reoxygenation-induced cell injury. The levels of nNOS immunoactivities and mRNA by RT-PCR were enhanced by hypoxia with time and, down regulated following 24 h reoxygenation after hypoxia, and were attenuated by MK801. In addition, the reduction of nNOS mRNA levels by hypoxia/reoxygenation was also diminished by MK801. Further delineation of the mechanisms of NO production and nNOS regulation are needed and may lead to additional strategies to protect neuronal cells against hypoxic/reoxygenation insults.
Keywords:nNOS  apoptosis  MAP‐2  necrosis  NMDA
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号