首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function
Authors:Chang Paul  Coughlin Margaret  Mitchison Timothy J
Institution:Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. paul_chang2@hms.harvard.edu
Abstract:Poly(ADP-ribose) (PAR) is a large, negatively charged post-translational modification that is produced by polymerization of NAD+ by PAR polymerases (PARPs). There are at least 18 PARPs in the human genome, several of which have functions that are unknown. PAR modifications are dynamic; PAR structure depends on the balance between synthesis and hydrolysis by PAR glycohydrolase2. We previously found that PAR is enriched in vertebrate somatic-cell mitotic spindles and demonstrated a requirement for PAR in the assembly of Xenopus egg extract spindles. Here, we knockdown all characterized PARPs using RNA interference (RNAi), and identify tankyrase-1 as the PARP that is required for mitosis. Tankyrase-1 localizes to mitotic spindle poles, to telomeres and to the Golgi apparatus. Tankyrase-1 RNAi was recently shown to result in mitotic arrest, with abnormal chromosome distributions and spindle morphology observed--data that is interpreted as evidence of post-anaphase arrest induced by failure of telomere separation6. We show that tankyrase-1 RNAi results in pre-anaphase arrest, with intact sister-chromatid cohesion. We also demonstrate a requirement for tankyrase-1 in the assembly of bipolar spindles, and identify the spindle-pole protein NuMA as a substrate for covalent modification by tankyrase-1.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号