首页 | 本学科首页   官方微博 | 高级检索  
     


Poly(lactic-co-glycolic acid) hollow fibre membranes for use as a tissue engineering scaffold
Authors:Ellis Marianne J  Chaudhuri Julian B
Affiliation:Centre for Regenerative Medicine, Department of Chemical Engineering, University of Bath, Claverton Down, Bath, UK. m.j.ellis@bath.ac.uk
Abstract:Mass transfer limitations of scaffolds are currently hindering the development of 3-dimensional, clinically viable, tissue engineered constructs. We have developed a poly(lactide-co-glycolide) (PLGA) hollow fibre membrane scaffold that will provide support for cell culture, allow psuedovascularisation in vitro and provide channels for angiogenesis in vivo. We produced P(DL)LGA flat sheet membranes using 1, 4-dioxane and 1-methyl-2-pyrrolidinone (NMP) as solvents and water as the nonsolvent, and hollow fibre membranes, using NMP and water, by dry/wet- and wet-spinning. The resulting fibres had an outer diameter of 700 micro m and an inner diameter of 250 micro m with 0.2-1.0 micro m pores on the culture surface. It was shown that varying the air gap and temperature when spinning changed the morphology of the fibres. The introduction of a 50 mm air gap caused a dense skin of 5 micro m thick to form, compared to a skin of 0.5 micro m thick without an air gap. Spinning at 40 degrees C produced fibres with a more open central section in the wall that contained more, larger macrovoids compared to fibres spun at 20 degrees C. Culture of the immortalised osteogenic cell line 560pZIPv.neo (pZIP) was carried out on the P(DL)LGA flat sheets in static culture and in a P(DL)LGA hollow fibre bioreactor under counter-current flow conditions. Attachment and proliferation was statistically similar to tissue culture polystyrene on the flat sheets and was also successful in the hollow fibre bioreactor. The P(DL)LGA hollow fibres are a promising scaffold to address the size limitations currently seen in tissue engineered constructs.
Keywords:hollow fibre membrane  PLGA  bone tissue engineering  mass transfer  scaffold  bioreactor
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号