首页 | 本学科首页   官方微博 | 高级检索  
     


Aldose reductase from human psoas muscle. Affinity labeling of an active site lysine by pyridoxal 5'-phosphate and pyridoxal 5'-diphospho-5'-adenosine
Authors:N A Morjana  C Lyons  T G Flynn
Affiliation:Department of Biochemistry, Queen's University, Kingston, Ontario, Canada.
Abstract:The reaction of aldose reductase from human psoas muscle with either pyridoxal 5'-phosphate (PLP) or pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP) results in a pseudo first-order 2-fold activation of the enzyme with the stoichiometric incorporation of 1 mol of either reagent per mol of enzyme. However, in addition to an increase in Vmax there was also an increase in Km for both substrate, DL-glyceraldehyde, and coenzyme, NADPH. This resulted in an overall decrease in catalytic efficiency (kcat/Km). Spectral analysis indicated that activation by both PLP and PLP-AMP was accompanied by Schiff's base formation and epsilon-pyridoxyllysine was identified in hydrolysates of the reduced enzyme PLP-complex. Digestion of either PLP-modified or PLP-AMP-modified aldose reductase with endoproteinase Lys-C followed by high performance liquid chromatography purification and amino acid sequencing of the pyridoxyllated peptide revealed that PLP and PLP-AMP had modified the same lysine residue. A 32-residue peptide containing the essential lysine was found to be highly homologous with a segment of the sequence of both human liver aldehyde reductase and rat lens aldose reductase. A tetrapeptide (Ile-Pro-Lys-Ser) containing the essential lysine was identical in all three enzymes. These results highlight the close structural similarity between members of the aldehyde reductase family.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号