首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electron correlation effects and density analysis of the first-order hyperpolarizability of neutral guanine tautomers
Authors:Andrea Alparone
Institution:1. Department of Chemistry, University of Catania, viale A. Doria 6, Catania, 95125, Italy
Abstract:Dipole moments (μ), charge distributions, and static electronic first-order hyperpolarizabilities (β μ ) of the two lowest-energy keto tautomers of guanine (7H and 9H) were determined in the gas phase using Hartree–Fock, Møller–Plesset perturbation theory (MP2 and MP4), and DFT (PBE1PBE, B97-1, B3LYP, CAM-B3LYP) methods with Dunning’s correlation-consistent aug-cc-pVDZ and d-aug-cc-pVDZ basis sets. The most stable isomer 7H exhibits a μ value smaller than that of the 9H form by a factor of ca. 3.5. The β μ value of the 9H tautomer is strongly dependent on the computational method employed, as it dramatically influences the β μ (9H)/β μ (7H) ratio, which at the highest correlated MP4/aug-cc-pVDZ level is predicted to be ca. 5. The Coulomb-attenuating hybrid exchange-correlation CAM-B3LYP method is superior to the conventional PBE1PBE, B3LYP, and B97-1 functionals in predicting the β μ values. Differences between the largest diagonal hyperpolarizability components were clarified through hyperpolarizability density analyses. Dipole moment and first-order hyperpolarizability are molecular properties that are potentially useful for distinguishing the 7H from the 9H tautomer.
Figure
Hyperpolarizability density analysis of the most stable guanine tautomer
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号