首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermophilic xylanases: from bench to bottle
Authors:Abdul Basit  Junquan Liu  Kashif Rahim
Institution:1. Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China;2. Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
Abstract:Lignocellulosic biomass is a valuable raw material. As technology has evolved, industrial interest in new ways to take advantage of this raw material has grown. Biomass is treated with different microbial cells or enzymes under ideal industrial conditions to produce the desired products. Xylanases are the key enzymes that degrade the xylosidic linkages in the xylan backbone of the biomass, and commercial enzymes are categorized into different glycoside hydrolase families. Thermophilic microorganisms are excellent sources of industrially relevant thermostable enzymes that can withstand the harsh conditions of industrial processing. Thermostable xylanases display high-specific activity at elevated temperatures and distinguish themselves in biochemical properties, structures, and modes of action from their mesophilic counterparts. Natural xylanases can be further improved through genetic engineering. Rapid progress with genome editing, writing, and synthetic biological techniques have provided unlimited potential to produce thermophilic xylanases in their natural hosts or cell factories including bacteria, yeasts, and filamentous fungi. This review will discuss the biotechnological potential of xylanases from thermophilic microorganisms and the ways they are being optimized and produced for various industrial applications.
Keywords:Thermophilic xylanases  expression and engineering  industrial applications
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号