首页 | 本学科首页   官方微博 | 高级检索  
     


Soil microbes regulate ecosystem productivity and maintain species diversity
Authors:Stefan A Schnitzer  John Klironomos
Affiliation:1.Department of Biological Sciences; University of Wisconsin-Milwaukee; Milwaukee, WI USA;2.Smithsonian Tropical Research Institute; Balboa, Panamá;3.Department of Biology; University of British Columbia-Okanagan; Kelowna, BC Canada
Abstract:One of the major goals in ecology is to determine the mechanisms that drive the asymptotic increase in ecosystem productivity with plant species diversity. Niche complementarity, the current paradigm for the asymptotic diversity-productivity pattern, posits that the addition of species to a community increases productivity because each species specializes on different resources and thus can more thoroughly utilize the available resources. At higher diversity the increase in productivity decreases because resources become limiting, resulting in the classic asymptotic diversity-productivity pattern. An alternative but less tested explanation is that density-dependent disease from species-specific soil microbes drive the diversity-productivity relationship by increasing disease and thus decreasing productivity at low diversity. At higher diversity, productivity asymptotes because disease decreases with increasing diversity until it reaches a uniformly low level. Using a series of field experiments, we found that the classic asymptotic diversity-productivity pattern existed only when soil microbes were present. Soil microbes created the well-known pattern by depressing plant growth at low productivity though negative density dependent disease. In contrast, niche complementarity played only a weak role in explaining the diversity-productivity relationship because productivity remained high at low abundance in the absence of soil microbes. Based on our findings, the ongoing loss of species in natural ecosystems will likely increase per capita plant disease and lower ecosystem productivity. Furthermore, recent evidence suggests that negative density dependent disease maintains plant species diversity, and thus this single mechanism appears to link diversity maintenance to the diversity-productivity curve—two important ecological processes.Key words: density dependence, diversity-productivity, negative feedback, pathogens, species richness, soil microbesThe asymptotically saturating increase in ecosystem productivity with increasing diversity is a well know pattern in nature14 (Fig. 1). The pattern has been used as an argument for the importance of species diversity,5 and understanding the mechanisms that drive the pattern is critical to determine the potential loss in productivity with ongoing and accelerating species loss in many ecosystems. The cause of the diversity-productivity pattern can be explained by either bottom-up control, such as plant resource competition, or top-down control from plant herbivores or pathogens. Most contemporary explanations for the pattern are centered on the bottom-up concept of niche-based resource competition, in which different species utilize different resources. The commonly accepted explanation, the niche complementarity hypothesis, states that the increase in species diversity increases productivity because each additional species uses a differ set of resources (e.g., nutrients) and thus more thoroughly utilizes whole-ecosystem resources.3,4,6 At high diversity, however, the resource requirements of additional species overlap with existing ones and thus productivity no longer increases with diversity, resulting in the asymptotic diversity-productivity pattern (Fig. 1).Open in a separate windowFigure 1Theoretical relationship between species number and biomass. As diversity increases, total biomass increases asymptotically.Top-down control from plant enemies may also produce the asymptotic diversity-productivity pattern if the enemies are species-specific and have a strong negative density-dependent effect at low diversity. One general group of enemies is plant pathogens and parasites (bacterial, fungal, viral) that live in the soil and infect plant roots (hereafter referred to as soil pathogens). The specificity of soil pathogens has been shown in various studies and is now generally accepted.1,7,8 The negative density dependent effect of plant pathogens at low diversity is likely because when diversity is low the relative abundance of each remaining species is high,911 which leads to most individuals growing in close proximity of conspecifics and thus a greater probability of species-specific disease transmission. Unlike other plant enemies, such as foliar pathogens or insect and mammalian herbivores, which can be broadly dispersed, soil-borne pathogens may be a particularly effective driver of negative density dependent effects because they have low mobility and thus are more likely to infect nearby conspecifics, which causes increased disease at low diversity.911 As diversity increases, the effect of soil-borne pathogens decreases because there is a lower likelihood of growing near a conspecific and there are lower concentrations of host-specific soil enemies.10 Consequently, soil-borne, species-specific disease may limit ecosystem productivity through top-down density-dependent regulation, even in the absence of niche-based explanations. Few studies, however, have considered the role of plant soil pathogens in driving the classic diversity-productivity relationship1 (see also ref. 2) and, until now, no study has compared the two potential drivers simultaneously.1We used a modeling approach to first demonstrate that both niche complementarity and species-specific soil pathogens can both theoretically drive the well-known diversity-productivity pattern.1 We then used a series of complementary field experiments in grasslands in North America (Ontario, Canada and Minnesota, USA) to determine how plant disease and productivity change over a gradient of plant species richness in the presence and absence of soil microbes, and whether feedback between plants and their species-specific soil biota influenced the diversity-productivity pattern.1 We first tested whether the asymptotic diversity-ecosystem productivity relationship arose in the presence of soil pathogens (a test of the negative density dependence hypothesis) or in the absence of soil pathogens (a test of the niche complementarity hypothesis). We then confirmed that soil biota were species specific and examined the decrease in plant disease and increase in productivity with increasing plant diversity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号