首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea
Authors:Arp Daniel J  Sayavedra-Soto Luis A  Hommes Norman G
Affiliation:Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331-2902, USA. arpd@bcc.orst.edu
Abstract:Nitrosomonas europaea uses only NH(3), CO(2) and mineral salts for growth and as such it is an obligate chemo-lithoautotroph. The oxidation of NH(3) is a two-step process catalyzed by ammonia monooxygenase (AMO) and hydroxylamine oxidoreductase (HAO). AMO catalyzes the oxidation of NH(3) to NH(2)OH and HAO catalyzes the oxidation of NH(2)OH to NO(2)(-). AMO is a membrane-bound enzyme composed of three subunits. HAO is located in the periplasm and is a homotrimer with each subunit containing eight c-type hemes. The electron flow from HAO is channeled through cytochrome c(554) to cytochrome c(m552), where it is partitioned for further utilization. Among the ammonia-oxidizing bacteria, the genes for AMO, these cytochromes, and HAO are present in up to three highly similar copies. Mutants with mutations in the copies of amoCAB and hao in N. europaea have been isolated. All of the amoCAB and hao gene copies are functional. N. europaea was selected by the United States Department of Energy for a whole-genome sequencing project. In this article, we review recent research on the molecular biology and biochemistry of NH(3) oxidation in nitrifiers.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号