首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src
Authors:Streblow Daniel N  Vomaske Jennifer  Smith Patsy  Melnychuk Ryan  Hall Laurel  Pancheva Dora  Smit Martine  Casarosa Paola  Schlaepfer David D  Nelson Jay A
Institution:Department of Molecular Microbiology and Immunology and The Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Portland Oregon 97201, USA. streblow@ohsu.edu
Abstract:The human cytomegalovirus-encoded chemokine receptor US28 induces arterial smooth muscle cell (SMC) migration; however, the underlying mechanisms involved in this process are unclear. We have previously shown that US28-mediated SMC migration occurs by a ligand-dependent process that is sensitive to protein-tyrosine kinase inhibitors. We demonstrate here that US28 signals through the non-receptor protein-tyrosine kinases Src and focal adhesion kinase (FAK) and that this activity is necessary for US28-mediated SMC migration. In the presence of RANTES (regulated on activation normal T cell expressed and secreted), US28 stimulates the production of a FAK.Src kinase complex. Interestingly, Src co-immunoprecipitates with US28 in a ligand-dependent manner. This association occurs earlier than the formation of the FAK.Src kinase complex, suggesting that US28 activates Src before FAK. US28 binding to RANTES also promotes the formation of a Grb2.FAK complex, which is sensitive to treatment with the Src inhibitor PP2, further highlighting the critical role of Src in US28 activation of FAK. Human cytomegalovirus US28-mediated SMC migration is inhibited by treatment with PP2 and through the expression of either of two dominant negative inhibitors of FAK (F397Y and NH2-terminal amino acids 1-401). These findings demonstrate that activation of FAK and Src plays a critical role in US28-mediated signaling and SMC migration.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号