首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Current Transients Associated with BK Channels in Human Glioma Cells
Authors:C B?Ransom  X?Liu  Email author" target="_blank">H?SontheimerEmail author
Institution:(1) Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
Abstract:We have previously demonstrated the expression of BK channels in human glioma cells. There was a curious feature to the whole-cell currents of glioma cells seen during whole-cell patch-clamp: large, outward current transients accompanied repolarization of the cell membrane following an activating voltage step. This transient current, I transient, activated and inactivated rapidly (ap1 ms). The I-V relationship of I transient had features that were inconsistent with simple ionic current through open ion channels: (i) I transient amplitude peaked with a –80 mV voltage change and was invariant over a 200 mV range, and (ii) I transient remained large and outward at –140 mV. We provide evidence for a direct relationship of I transient to glioma BK currents. They had an identical time course of activation, identical pharmacology, identical voltage-dependence, and small, random variations in the amplitude of the steady-state BK current and I transient seen over time were often perfectly in phase. Substituting intracellular K+ with Cs+, Li+, or Na + ions reversibly reduced I transient and BK currents. I transient was not observed in recordings of other BK currents (hbr5 expressed in HEK cells and BK currents in rat neurons), suggesting I transient is unique to BK currents in human glioma cells. We conclude that I transient is generated by a mechanism related to the deactivation, and level of prior activation, of glioma BK channels. To account for these findings we propose that K+ ions are ldquotrappedrdquo within glioma BK channels during deactivation and are forced to exit to the extracellular side in a manner independent of membrane potential.
Keywords:Large-conductance calcium-activated K+ channel  Glia  Permeation  Patch clamp
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号