首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression of functional Schistosoma mansoni Smad4: role in Erk-mediated transforming growth factor beta (TGF-beta) down-regulation
Authors:Osman Ahmed  Niles Edward G  LoVerde Philip T
Institution:Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, School of Medicine, State University of New York, Buffalo, New York 14214, USA.
Abstract:Members of the transforming growth factor (TGF)-beta superfamily play pivotal roles in cell migration, differentiation, adhesion, pattern formation, and apoptosis. The family of Smad proteins acts as intracellular signal transducers of TGF-beta and related peptides. Smad4, a common mediator Smad (co-Smad), performs a central role in transmitting signals from TGF-beta, BMP, and activins. Schistosoma mansoni receptor-regulated Smad1 and SmSmad2 were previously identified and shown to act in TGF-beta signaling. Herein, we report the identification and characterization of a Smad4 homologue from S. mansoni and provide details about its role in mediation and down-regulation of TGF-beta signaling in schistosomes. In order to identify the schistosome co-Smad, we designed degenerate primers based on the sequence of the conserved MH1/MH2 domains of Smad4 proteins, which were used in PCR to amplify a 137-bp PCR product. A S. mansoni adult worm pair cDNA library was screened resulting in the isolation of a cDNA clone that encodes a 738 amino acid protein (SmSmad4). SmSmad4 was shown to interact with schistosome R-Smads (SmSmad1 and SmSmad2) in vivo and in vitro. The interaction with SmSmad2 was dependent on the receptor-mediated phosphorylation of SmSmad2. In addition, several potential phosphorylation sites for Erk1/2 kinases were identified in the SmSmad4 linker region and shown to be phosphorylated in vitro by an active mutant of mammalian Erk2. Furthermore, Erk-mediated phosphorylation of SmSmad4 decreased its interaction with the receptor-activated form of SmSmad2, in vitro. SmSmad4 was shown to complement a human Smad4 deficiency through the restoration of TGF-beta-responsiveness in MDA-MB-468 breast cancer cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号