首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of a complex associated with processing and polyadenylation in vitro of herpes simplex virus type 1 thymidine kinase precursor RNA.
Authors:F Zhang and  C N Cole
Institution:Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756.
Abstract:Cleavage and polyadenylation of substrate RNAs containing the herpes simplex virus type 1 (HSV-1) thymidine kinase (tk) gene polyadenylation signal region were examined in HeLa cell nuclear extract. 3'-End RNA processing was accurate and efficient and required ATP and Mg2+. Cleavage, but not polyadenylation, occurred in the presence of EDTA or when ATP was replaced with 3' dATP (cordycepin) or AMP(CH2)PP, a nonhydrolyzable analog of ATP. Processing in vitro and in vivo showed the same signal element requirements: a series of substrates containing linker scanning, internal deletion, and small insertion mutations was processed with the same relative efficiencies and at the same sites in vitro and in vivo. A complex involved in 3'-end RNA processing was identified by gel mobility shift analysis. This complex formed rapidly, reached a maximum level after 20 to 30 min, and was much reduced after 2 h. Very little complex was formed at 0 degree C or with substrates lacking a polyadenylation signal. Entry of 32P-labeled tk substrate into the complex could be prevented by addition of excess 35S-labeled tk or adenovirus L3 precursor RNAs. Competition was not observed with tk RNAs lacking a complete polyadenylation signal.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号