首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanisms of acetaminophen oxidation to N-acetyl-P-benzoquinone imine by horseradish peroxidase and cytochrome P-450
Authors:D W Potter  J A Hinson
Abstract:Horseradish peroxidase rapidly catalyzed the H2O2-dependent polymerization of acetaminophen. Acetaminophen polymerization was decreased and formation of GSSG and minor amounts of GSH-acetaminophen conjugates were detected in reaction mixtures containing GSH. These data suggest that horseradish peroxidase catalyzed the 1-electron oxidation of acetaminophen and that GSH decreased polymerization by reducing the product, N-acetyl-p-benzosemiquinone imine, back to acetaminophen. Analyses of reaction mixtures that did not contain GSH showed N-acetyl-p-benzoquinone imine formation shortly after initiation of reactions. When GSH was added to similar reaction mixtures at various times, 3-(glutathion-S-yl)-acetaminophen was formed. The formation and disappearance of this product were very similar to N-acetyl-p-benzoquinone imine formation and were consistent with the disproportionation of 2 mol of N-acetyl-p-benzosemiquinone imine to 1 mol of N-acetyl-p-benzoquinone imine and 1 mol of acetaminophen followed by the rapid reaction of N-acetyl-p-benzoquinone imine with GSH to form 3-(glutathion-S-yl)acetaminophen. When acetaminophen was incubated with NADPH, oxygen and hepatic microsomes from phenobarbital-pretreated rats, 1.2 nmol 3-(glutathion-S-yl)acetaminophen/nmol cytochrome P-450/10 min was formed. Formation of polymers was not observed indicating that N-acetyl-p-benzoquinone imine was formed via an overall 2-electron oxidation rather than a disproportionation reaction. However, when cumene hydroperoxide was replaced by NADPH in microsomal incubations, polymerization was observed suggesting that cytochrome P-450 might also catalyze the 1-electron oxidation of acetaminophen.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号