首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Adsorption studies for the separation ofl-tryptophan froml-serine and indole in a bioconversion medium
Authors:M H L Ribeiro  D M F Prazeres  J M S Cabral  M M R da Fonseca
Institution:(1) Faculdade de Farmácia de Lisboa, Química-Física, 1609 Lisboa Codex, Portugal;(2) Laboratório de Engenharia Bioquímica, Instituto Superior Técnico, 1096 Lisboa Codex, Portugal
Abstract:l-tryptophan was produced froml-serine and indole by immobilized Escherichia coli cells in organic-aqueous systems. Selective adsorption was the method chosen to enable both product separation andl-serine reutilization. Amongst various adsorbents tested activated carbons and neutral polymeric resins (XAD-4 and XAD-7) showed good performance. The neutral resins could selectively concentrate thel-tryptophan from dilute aqueous solutions and adsorbed only 5% of the unconvertedl-serine. High separation factors (l-tryptophan/l-serine and indole/l-tryptophan) were obtained with these adsorbents. Despite a lower capacity, the XAD-7 resin had the advantage of desorbingl-tryptophan with basic or acidic solutions, while organic solvents were required to desorb, at the same concentration levels, this compound from XAD-4.In a packed bed column filled with XAD-4 resin or activated carbon, totall-tryptophan adsorption and recovery were achieved at linear velocities up to 5.0 cm/min and 3.2 cm/min respectively. Successive sorbent reutilization, following continuous sorption and elution steps, was carried out in packed bed columns with the neutral resins and activated carbon.Thel-form of tryptophan, after crystallization, was identified by HPTLC.List of Symbols HPLC High Performance Liquid Chromatography - HPTLC High Performance Thin Layer Chromatography - Trp tryptophan - Ser Serine - A amount of sorbent(g) - c equilibrium solute concentration in the aqueous phase (g/dm3) - c i initial (before adding the sorbent) liquid phase concentration (g/dm3) - C T tryptophan concentration in the inlet solution (g/dm3) - C To tryptophan concentration in the outlet solution (g/dm3) - E z axial dispersion coefficient (m2/s) - k experimental constant (Eq. 1, 2 and 3) - K 1 rate constant of adsorption (min–1) - L column length(m) - n experimental constant (eq. 1, 2 and 3) - q equilibrium solid phase concentration (g solute/g sorbent) - q max maximum capacity of sorbent (g solute/g sorbent) - t time(s) - v liquid velocity (m/s) - V volume of liquid phase(dm3) - V e eluted volume(dm3) - V r volume needed to saturate the column (dm3)
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号