首页 | 本学科首页   官方微博 | 高级检索  
     


Fluorescence detected magnetic resonance of monomers and aggregates of bacteriochlorophylls of green sulfur bacteria Chlorobium sp.
Authors:Psencik  Jakub  Schaafsma  Tjeerd J.  Searle  Geoffrey F. W.  Hala  Jan
Affiliation:(1) Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic;(2) Department of Molecular Physics, Wageningen Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
Abstract:Fluorescence detected magnetic resonance (FDMR) was used to study the lowest triplet state of bacteriochlorophylls (BChls) c and d in Chlorobium (Chl.) tepidum and Chl. vibrioforme, respectively. These pigments were studied both in the oligomeric form (in whole cells) and in the monomeric form (after conversion using a 1% 1-hexanol treatment). Fluorescence spectra show the presence of lower-state aggregates, apart from monomers, in samples treated with 1-hexanol. Values of the zero field splitting (ZFS) parameter D, obtained from FDMR spectra, were found to decrease with an increasing aggregate size. The observed ZFS trends are explained by a delocalization of the triplet spins, including a charge resonance (CR) contribution, over the aggregate. A simple model is presented relating the changes of D and E as a result of monomer aggregation to the aggregate geometry. Application of this model to BChls c and d indicates approximately diagonal stacking of the monomers in the dimer. Results for oligomeric BChl c and d were compared with those previously obtained for oligomeric BChl e. FDMR transitions of BChls c, d and e differ both in frequencies and in signs. The D and E values of Car's and BChl a (in whole cells) agree well with those reported for Chl. phaeobacteroides and Chl. limicola.
Keywords:aggregate structure  charge resonance  triplet state
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号