首页 | 本学科首页   官方微博 | 高级检索  
   检索      


LMW-PTP modulates glucose metabolism in cancer cells
Authors:Giulia Lori  Tania Gamberi  Paolo Paoli  Anna Caselli  Erica Pranzini  Riccardo Marzocchini  Alessandra Modesti  Giovanni Raugei
Institution:Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
Abstract:

Background

Low Molecular Weight Phosphotyrosine Protein Phosphatase (LMW-PTP) is an enzyme involved not only in tumor onset and progression but also in type 2 diabetes. A recent review shows that LMW-PTP acts on several RTK (receptor tyrosine kinase) such as PDGFR, EGFR, EphA2, Insulin receptor. It is well described also its interaction with cSrc. It is noteworthy that most of these conclusions are based on the use of cell lines expressing low levels of LMW-PTP. The aim of the present study was to discover new LMW-PTP substrates in aggressive human tumors where the over-expression of this phosphatase is a common feature.

Methods

We investigated, by proteomic analysis, the protein phosphorylation pattern of A375 human melanoma cells silenced for LMW-PTP. Two-dimensional electrophoresis (2-DE) analysis, followed by western blot was performed using anti-phosphotyrosine antibodies, in order to identify differentially phosphorylated proteins.

Results

Proteomic analysis pointed out that most of the identified proteins belong to the glycolytic metabolism, such as α-enolase, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase and triosephosphate isomerase, suggesting an involvement of LMW-PTP in glucose metabolism. Assessment of lactate production and oxygen consumption demonstrated that LMW-PTP silencing enhances glycolytic flux and slow down the oxidative metabolism. In particular, LMW-PTP expression affects PKM2 tyrosine-phosphorylation and nuclear localization, modulating its activity.

Conclusion

All these findings propose that tumor cells are subjected to metabolic reprogramming after LMW-PTP silencing, enhancing glycolytic flux, probably to compensate the inhibition of mitochondrial metabolism.

General significance

Our results highlight the involvement of LMW-PTP in regulating glucose metabolism in A375 melanoma cells.
Keywords:LMW-PTP  Glucose metabolism  PKM2  Metabolic reprogramming of cancer cells
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号