首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isolation and characterization of a microperoxidase-8 with a modified histidine axial ligand
Authors:Jean-Louis Primus  Sjef Boeren  Michel W Nielen  Jacques Vervoort  Lucia Banci  Ivonne M Rietjens
Institution:Laboratory of Biochemistry, Wageningen University, The Netherlands. primus@imec.be
Abstract:Microperoxidase-8, Fe(III)MP-8, the heme octapeptide obtained by horse heart cytochrome c digestion, was studied in the presence of H(2)O(2). A modified form of the catalyst was isolated by HPLC and showed a UV/visible spectrum similar to that of Fe(III)MP-8. ESI-MS measurements revealed a 16 Da increase in molecular mass for the modified catalyst when compared to Fe(III)MP-8, suggesting the insertion of an oxygen atom. ESI-MS(2) fragmentation measurements point at oxygen incorporation on the His18 residue of the octapeptide of the modified catalyst. Comparison of the (1)H NMR chemical shifts of the methyl protons of the porphyrin ring of Fe(III)MP-8 and the modified catalyst shows a large shift for especially the 3-methyl and 5-methyl resonances, whereas the other (1)H NMR chemical shifts are almost unaffected. These observations can best be ascribed to a reorientation of the histidine axial ligand. The latter is suggested to be the consequence of an oxygen insertion, possibly on the imidazole ring of His18, thereby corroborating the data obtained by ESI-MS(2). (1)H NMR NOE difference measurements on Fe(III)MP-8 and on the modified catalyst supported the assignment of the H(delta)2 and H(epsilon)1 protons of the His18 imidazole ring. The ring amine proton H(delta)1 could not be detected in both forms of the catalyst. For Fe(III)MP-8 this absence of the H(delta)1 resonance can be ascribed to fast H/D exchange. For the modified catalyst the NMR data are not contradictory, with an oxygen insertion on position delta1 of the His18 imidazole ring with a fast H/D exchanging hydroxyl proton. Together these data converge in suggesting the H(2)O(2) modified catalyst bears a hydroxylated His18 axial ligand. The mechanism that could underlie Fe(III)MP-8 axial histidine hydroxylation is further discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号