Identification of the site of binding of sulfated, low molecular weight lignins on thrombin |
| |
Authors: | Abdel Aziz May H Mosier Philip D Desai Umesh R |
| |
Affiliation: | Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298, United States |
| |
Abstract: | Sulfated, low molecular weight lignins (LMWLs), designed recently as macromolecular mimetics of the low molecular weight heparins (LMWHs), were found to exhibit a novel allosteric mechanism of inhibition of human thrombin, factor Xa and plasmin, which translates into potent human blood anticoagulation potential. To identify the site of binding of sulfated LMWLs, a panel of site-directed thrombin mutants was studied. Substitution of alanine for Arg93 or Arg175 induced a 7–8-fold decrease in inhibition potency, while Arg165Ala, Lys169Ala, Arg173Ala and Arg233Ala thrombin mutants displayed a 2–4-fold decrease. Other exosite 2 residues including those that play an important role in heparin binding, such as Arg101, Lys235, Lys236 and Lys240, did not induce any deficiency in sulfated LMWL activity. Thrombin mutants with multiple alanine substitution of basic residues showed a progressively greater defect in inhibition potency. Comparison of thrombin, factor Xa, factor IXa and factor VIIa primary sequences reiterated Arg93 and Arg175 as residues likely to be targeted by sulfated LMWLs. The identification of a novel site on thrombin with capability of allosteric modulation is expected to greatly assist the design of new regulators based on the sulfated LMWL scaffold. |
| |
Keywords: | Enzyme inhibition Thrombin Factor Xa Allosteric inhibitors Heparin mimetics |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|