首页 | 本学科首页   官方微博 | 高级检索  
     


Population structure and conservation implications for the loggerhead sea turtle of the Cape Verde Islands
Authors:Catalina Monzón-Argüello  Ciro Rico  Eugenia Naro-Maciel  Nuria Varo-Cruz  Pedro López  Adolfo Marco  Luis Felipe López-Jurado
Affiliation:1. Instituto Canario de Ciencias Marinas, Crta. de Taliarte s/n, 35200, Telde, Gran Canaria, Spain
2. Estación Biológica de Do?ana (CSIC), Avda. María Luisa s/n, 41013, Sevilla, Spain
3. Biology Department, College of Staten Island/City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
4. Departamento de Biología, Universidad de Las Palmas de G.C., Campus de Tafira, 35017, Las Palmas de Gran Canaria, Gran Canaria, Spain
5. Naturalia, Capa Verder Ltd., Sal-Rei, Boa Vista, Republic of Cape Verde
Abstract:The Cape Verde Islands harbour the second largest nesting aggregation of the globally endangered loggerhead sea turtle in the Atlantic. To characterize the unknown genetic structure, connectivity, and demographic history of this population, we sequenced a segment of the mitochondrial (mt) DNA control region (380 bp, n = 186) and genotyped 12 microsatellite loci (n = 128) in females nesting at three islands of Cape Verde. No genetic differentiation in either haplotype or allele frequencies was found among the islands (mtDNA F ST = 0.001, P > 0.02; nDNA F ST = 0.001, P > 0.126). However, population pairwise comparisons of the mtDNA data revealed significant differences between Cape Verde and all previously sequenced Atlantic and Mediterranean rookeries (F ST = 0.745; P < 0.000). Results of a mixed stock analysis of mtDNA data from 10 published oceanic feeding grounds showed that feeding grounds of the Madeira, Azores, and the Canary Islands, in the Atlantic Ocean, and Gimnesies, Pitiüses, and Andalusia, in the Mediterranean sea, are feeding grounds used by turtles born in Cape Verde, but that about 43% (±19%) of Cape Verde juveniles disperse to unknown areas. In a subset of samples (n = 145) we evaluated the utility of a longer segment (~760 bp) amplified by recently designed mtDNA control region primers for assessing the genetic structure of Atlantic loggerhead turtles. The analysis of the longer fragment revealed more variants overall than in the shorter segments. The genetic data presented here are likely to improve assignment and population genetic analyses, with significant conservation and research applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号