首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of thyroidectomy and adrenalectomy on changes in liver glutathione and malonaldehyde levels after acute ethanol injection
Authors:JP Teare  SM Greenfield  JS Marway  VR Preedy  NA Punchard  TJ Peters  RPH Thompson
Institution:

2 Gastrointestinal Laboratory, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, England

a Department of Clinical Biochemistry, King's College Hospital, London SE5 9RS, England

Abstract:At low concentrations ethanol is metabolized largely by alcohol dehydrogenase to acetaldehyde, while at higher concentrations a microsomal ethanol oxidising system (MEOS) is involved, namely cytochrome P450 IIE1, which also probably generates free radical species. In hyperthyroidism hepatic glutathione stores are depleted and net superoxide anion production occurs. In contrast, in hypothyroidism hepatic glutathione may be increased and thus renders the liver less sensitive to alcohol generated free radical production. Steroid hormones inhibit lipid peroxidation. Sixty male Wistar rats either underwent thyroidectomy, adrenalectomy, or sham procedures. Twenty control animals were pair fed with thyroidectomized animals, whilst another twenty fed ad libitum. An intraperitoneal injection of alcohol (75 mmol/kg) was given 2.5 h prior to sacrifice to half the animals in each group, the remainder receiving saline. The total hepatic glutathione contents of the pair fed and the ad libitum groups were not different, but were significantly increased by thyroidectomy (p = <0.001). This effect was significantly reduced by alcohol (p < 0.01). The sham procedures and dietary restrictions had no effect. The ethanol alone reduced total hepatic glutathione, but this only reached statistical significance in the thyroidectomized and sham-adrenalectomized groups. Hepatic malonaldehyde (MDA) levels were significantly reduced in the thyroidectomy group but alcohol had no effect on them. We conclude that hypothyroidism increased hepatic glutathione status, presumably by reducing radical production by enzyme systems, which would otherwise consume this important scavenger. Long term exposure to ethanol with induction of MEOS is probably required for it to generate toxic levels of free radical species.
Keywords:Alcohol  Malonaldehyde  Glutathione  Adrenalectomy  Liver  Free radicals
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号