首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glial responses to steroids as markers of brain aging.
Authors:N R Nichols
Institution:Department of Physiology, Monash University, Clayton 3168, Melbourne, Victoria, Australia.
Abstract:Glia mediate neuroendocrine and neuroimmune functions that are altered during the process of normal aging. The biological functions of glia are also important in synaptic remodeling and the loss of synaptic connections that occur during aging. These functions are carried out by changes in glia, including changes in shape, interactions with neurons and other glia, and gene expression. The predominant change that occurs in glia during aging is glial activation, which can progress to reactive gliosis in response to neurodegeneration. More markers are needed to distinguish normal and reactive glia. During aging, astrocytes hypertrophy and exhibit signs of metabolic activation, and astrocytic processes surround neurons. Microglia also become activated and subsets of activated microglial increase in number and may enter the phagocytic or reactive stage. Glial markers of brain aging and glial activation include glial fibrillary acidic protein (GFAP) and transforming growth factor (TGF)-beta1, which are increased in astrocytes and microglia, respectively. Steroids regulate the interactions between glia and neurons and glial gene expression, including GFAP and TGF-beta1. Therefore, changes in these parameters during aging may be due to altered steroid regulation. In general, the effects of steroids oppose the effects of aging. Recent data indicate that steroid treatment can decrease the expression of GFAP in the aged brain, yet GFAP is resistant to down-regulation by endogenous glucocorticoids. Cellular and molecular markers of glial activation are being used to determine how changes in neuroendocrine and neuroimmune regulation contribute to repair and functional recovery that may reverse synaptic loss and cognitive impairment during aging.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号