首页 | 本学科首页   官方微博 | 高级检索  
     


An analysis of the change in K-permeability on depolarization in terms of affinity and numbers of total channels.
Authors:H Kitasato  K Murayama
Affiliation:Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, 602, Japan
Abstract:A theoretical relation between permeability and ionic concentrations in a bathing solution has been derived by assuming that only channels unoccupied by a competing non-permeable ion can transport ions specific for that channel. The affinities of the channel to the ion and the competitor are expressed by dissociation constants of the ion-site and competitor-site complexes in the channel.Analyses of the relation of K permeability to [K]o obtained from myelinated nerve fibres and Nitella cells revealed that the affinity of sites in K channels was independent of membrane potential, whereas K conductivity increased with depolarization. The value of the dissociation constant of the K+-site complex, K1, was estimated as 1244 mm for myelinated nerve, and K1 exp(ψ0FRT) for Nitella was 17.5 mm (ψ0 is the surface potential at the outer surface of membrane). The dependence on voltage of the total number of K channels was estimated from the dependence of K conductance on membrane potential at [K]o = [K]1 (obtained from the theoretical magnitude of K current computed by using the dissociation constants described above). It should be noted that when the channels are partially saturated with K+, neither the chord conductance nor the “permeability coefficient”, as defined in the Goldman and Hodgkin-Katz formulation, correctly represents the dependence on membrane potential of the total number of channels.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号