首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Alteration of cell cycle progression in human leukemia cell line (KOPM-28) induced by 12-o-tetradecanoylphorbol-13-acetate
Authors:H Tsuda  M Sakaguchi  M Kawakita  S Nakazawa  T Mori  K Takatsuki
Institution:Second Department of Internal Medicine, Kumamoto University School of Medicine, Japan.
Abstract:Terminal cell differentiation usually results in an irreversible arrest in the G1 phase of the cell cycle and loss of cell renewal ability. Human promyelocytic leukemia HL-60 cells induced with 12-o-tetradecanoylphorbol-13-acetate (TPA) differentiate into monocytes/macrophages and accumulate in G1. We determined the effect of TPA on the growth kinetics of a human leukemia cell line (KOPM-28), which developed several of the characteristics of megakaryocytes in response to TPA, such as the surface antigen complex IIb/IIIa, platelet peroxidase and polyploidy. Cell growth was immediately and completely inhibited by TPA. Flow cytometric analysis of cellular DNA content revealed a gradual decrease in cells in G1 and an accumulation of cells in G2. These data suggest that TPA prolonged G1 and rapidly arrested the cells in G2. Synchronized cells were utilized to further analyze the rapid G2 arrest. Cells arrested with aphidicolin at the G1/S interphase were released, and the effects of TPA (added at different intervals) on cell cycle progression were examined 14 h after release. The results showed that TPA added at the end of the S phase, as well as at the G1/S interphase incompletely but distinctly arrested cells in G2. Moreover, G2 arrest was observed when TPA was added to cells released from a colcemid-induced G2/M block, suggesting that cells already in G2 were inhibited by TPA from moving through M to G1. Since some cells became multi-nucleated in the course of incubation with TPA, this G2 accumulation may have resulted at least in part from a prolongation of the phase or a transient G2 block. These changes in cell cycle progression induced by TPA may be characteristic of and/or related to megakaryocytic differentiation of hemopoietic precursor cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号