首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biochemical studies of the excitable membrane of Paramecium aurelia. I. 45Ca2+ fluxes across resting and excited membrane
Authors:JL Browning  DL Nelson
Institution:Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisc. 53706 U.S.A.
Abstract:The characteristics of Ca2+ transport across the excitable membrane of Paramecium aurelia were studied by measuring 45Ca2+ influx and efflux. The intracellular concentration of free Ca2+ in resting P. aurelia was at least ten times less than the extracellular concentration. Ca2+ influx was easily measurable at 0°C, but not at 23°C. The influx of 45Ca2+ was stimulated by the same conditions which cause membrane depolarization and ciliary reversal. Addition of Na+ and K+ (which stimulate ciliary reversal) resulted in a 10-fold increase in the rate of Ca2+ influx. An externally applied, pulsed, electric field (1–2 mA/cm2 of electrode surface), caused the rate of Ca2+ influx to increase 3–5 times, with the extent of stimulation dependent on the current density and the pulse width Ca2+ influx had the characteristics of a passive transport system and was associated with the chemically or electrically triggered Ca2+ “gating” mechanism, which has been studied electrophysiologically. In contrast, Ca2+ efflux appeared to be catalyzed by an active transport system. With cells previously loaded at 0°C with 45Ca2+, Ca2+ efflux was rapid at 23°C, but did not occur at 0°C. This active Ca2+ efflux mechanism is probably responsible for maintaining the low internal Ca2+ levels in unstimulated cells.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号