Catalytic activity of cytochromes c and c1 in mitochondria and submitochondrial particles |
| |
Authors: | Peter Nicholls |
| |
Affiliation: | Institute of Biochemistry, Odense University, Niels Bohrs Allé, DK 5000 Odense Denmark |
| |
Abstract: | 1. Beef heart mitochondria have a cytochrome c1 : c : aa3 ratio of 0.65 : 1.0 : 1.0 as isolated; Keilin-Hartree submitochondrial particles have a ratio of 0.65 : 0.4 : 1.0. More than 50% of the submitochondrial particle membrane is in the ‘inverted’ configuration, shielding the catalytically active cytochrome c. The ‘endogenous’ cytochrome c of particles turns over at a maximal rate between 450 and 550 s?1 during the oxidation of succinate or ascorbate plus TMPD; the maximal turnover rate for cytochrome c in mitochondria is 300–400 s?1, at 28° – 30°C, pH 7.4.2. Ascorbate plus N,N,N′,N′-tetramethyl-p-phenylene diamine added to antimycin-treated particles induces anomalous absorption increases between 555 and 565 nm during the aerobic steady state, which disappear upon anaerobiosis; succinate addition abolishes this cycle and permits the partial resolution of cytochrome c1 and cytochrome c steady states at 552.5–547 nm and 550–556.5 nm, respectively.3. Cytochrome c1 is rather more reduced than cytochrome c during the oxidation of succinate and of ascorbate+N,N,N′,N′-tetramethyl-p-phenylene diamine in both mitochondria and submitochondrial particles; a near equilibrium condition exists between cytochromes c1 and c in the aerobic steady state, with a rate constant for the c1 → c reduction step greater than 103 s?1.4. The greater apparent response of the electron transfer step to salts, the hyperbolic inhibition of succinate oxidation by azide and cyanide, and the kinetic behaviour of the succinate-cytochrome c reductase system, are all explicable in terms of a near-equilibrium condition prevailing at the step. Endogenous cytochrome c of mitochondria and submitochondrial particles is apparently largely bound to cytochrome aa3 units in situ. Cytochrome c1 can either reduce the cytochrome c-cytochrome aa3 complex directly, or requires only a small extra amount of cytochrome c to carry the full electron transfer flux. |
| |
Keywords: | TMPD FCCP trifluoromethoxy-carbonylcyanide phenyl hydrazone EGTA |
本文献已被 ScienceDirect 等数据库收录! |
|