首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biosynthesis of bacterial glycogen: Kinetic studies of a glucose-1-P adenylyltransferase (EC 2.7.7.27) from a glycogen-excess mutant of Escherichia coli B
Authors:Jack Preiss  Claudia Lammel  Elaine Greenberg
Institution:Department of Biochemistry and Biophysics, University of California, Davis, California 95616 USA
Abstract:An Escherichia coli B mutant, CL1136 accumulates glycogen at 3.4 to 4 times the rate observed for the parent E. coli B strain. The glycogen accumulated in the mutant is similar to the glycogen isolated from the parent strain with respect to α- and β-amylolysis, chain length determination and I2-complex absorption spectra. The CL1136 mutant contains normal glycogen synthase and branching enzyme activity but has an ADPglucose pyrophosphorylase with altered kinetic and allosteric properties. The mutant enzyme has been partially purified and in contrast to the present strain enzyme studied previously, is highly active in the absence of the allosteric activator. The response of the CL1136 enzyme to energy charge has been determined and this enzyme shows appreciable activity at low energy charge values where the E. coli B enzyme is inactive. The response to energy charge for the CL1136 and E. coli B enzymes are correlated with the rates of glycogen accumulation observed in the microorganisms. The regulation of glycogen synthesis in E. coli is to a great extent at the level of ADPglucose pyrophosphorylase; varying concentrations of fructose-P2 and energy charge determine the rate of ADPglucose and glycogen synthesis. Both the allosteric regulation of ADPglucose pyrophosphorylase as well as the genetic regulations of the synthesis of glycogen biosynthetic enzymes (glycogen synthase and ADPglucose pyrophosphorylase) are involved in the regulation of glycogen accumulation in E. coli B.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号