首页 | 本学科首页   官方微博 | 高级检索  
     


Large deforming buoyant embolus passing through a stenotic common carotid artery: a computational simulation
Authors:Vahidi Bahman  Fatouraee Nasser
Affiliation:Department of Life Science Engineering, University of Tehran, Tehran, Iran.
Abstract:Arterial embolism is responsible for the death of lots of people who suffers from heart diseases. The major risk of embolism in upper limbs is that the ruptured particles are brought into the brain, thus stimulating neurological symptoms or causing the stroke. We presented a computational model using fluid-structure interactions (FSI) to investigate the physical motion of a blood clot inside the human common carotid artery. We simulated transportation of a buoyant embolus in an unsteady flow within a finite length tube having stenosis. Effects of stenosis severity and embolus size on arterial hemodynamics were investigated. To fulfill realistic nonlinear property of a blood clot, a rubber/foam model was used. The arbitrary Lagrangian-Eulerian formulation (ALE) and adaptive mesh method were used inside fluid domain to capture the large structural interfacial movements. The problem was solved by simultaneous solution of the fluid and the structure equations. Stress distribution and deformation of the clot were analyzed and hence, the regions of the embolus prone to lysis were localized. The maximum magnitude of arterial wall shear stress during embolism occurred at a short distance proximal to the throat of the stenosis. Through embolism, arterial maximum wall shear stress is more sensitive to stenosis severity than the embolus size whereas role of embolus size is more significant than the effect of stenosis severity on spatial and temporal gradients of wall shear stress downstream of the stenosis and on probability of clot lysis due to clot stresses while passing through the stenosis.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号