Abstract: | The proteolysis of flu virions of the strain A/Puerto Rico/8/34 (subtype H1N1) by enzymes of various classes was studied to develop an approach to the study of the structural organization and interaction of the basic protein components of the virion environment: hemagglutinin (HA), transmembrane homotrimeric glycoprotein, and matrix protein M1 forming a layer under the lipid membrane. Among the tested proteolytic enzymes and enzymic preparations (thermolysin, trypsin, chymotrypsin, subtilisin Carlsberg, pronase, papain, and bromelain), the cysteine proteases bromelain and papain and the enzymic preparation pronase efficiently deleted HA ectodomains, while chymotrypsin, trypsin, and subtilisin Carlsberg deleted only a part of them. An analysis by MALDI TOF mass spectrometry allowed us to locate the sites of HA hydrolysis by various enzymic preparations. Bromelain, papain, trypsin, and pronase split the polypeptide chain after the K177 residue located before the transmembrane domain (HA2 185-211). Subtilisin Carlsberg hydrolyzed the peptide bond at other neighboring points: after L178 (a basic site) or V176. The hydrolytic activity of bromelain measured by a highly specific chromogenic substrate of cysteine proteases Glp-Phe-Ala-pNA was almost three times higher in the presence of 5 mM beta-mercaptoethanol than in the presence of 50 mM. However, the complete removal of exodomains of HA, HA, and low-activity enzyme by the HA high- and low-activity enzyme required identical time intervals. In the absence of the reducing reagent, the removal of HA by bromelain proceeded a little more slowly and was accompanied by significant fragmentation of protein Ml1. The action of trans-epoxysuccinyl-L-leucylamido)butane (E-64), a specific inhibitor of cysteine proteases, and HgCl2 on the hydrolysis of proteins HA and M1 by bromelain was investigated. |